二元函数连续性、可导、可微判断

二元函数

f(x,y)={xyx2+y2,(x,y)(0,0)0,(x,y)=(0,0)f(x,y)=\left\{ \begin{aligned} &\frac{xy}{\sqrt{x^2+y^2}}, &&(x,y)≠(0,0)& \\ &0,&&(x,y)=(0,0)& \end{aligned} \right.

在点(0,0)(0,0)处的连续性,可导性,可微性

  1. 连续性
    本题利用极坐标换元
    x=rcosθ,y=rsinθx=rcosθ,y=rsinθ,则有x2+y2=r2x^2+y^2=r^2
    (x,y)(0,0)(x,y) \to (0,0)时,r0r\to0

lim(x,y)(0,0)f(x,y)=limr0r2sinθcosθr2=f(0,0)=0\begin{aligned} &lim_{(x,y)\to(0,0)}f(x,y)&\\ =&lim_{r \to 0}\frac{r^2sin\theta cos\theta}{\sqrt{r^2}}&\\ =&f(0,0)=0& \end{aligned}

则函数连续

  1. 可导性

fx(0,0)=limx0f(x,0)f(0,0)x0=limx00x=0\begin{aligned} f'_{x}(0,0)=&lim_{x\to0}\frac{f(x,0)-f(0,0)}{x-0}&\\ =&lim_{x \to 0}\frac{0}{x}=0& \end{aligned}

同理fy(0,0)=0f'_y(0,0)=0 ,偏导数存在
3. 可微性

limr0r2sinθcosθr2=limr0sinθcosθ\begin{aligned} &lim_{r\to0}\frac{r^2sin\theta cos\theta}{r^2}&\\ =&lim_{r \to 0}sin\theta cos\theta&\\ \end{aligned}

故极限不存在,该函数不可微